scalar product - определение. Что такое scalar product
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое scalar product - определение

ALGEBRAIC OPERATION THAT TAKES TWO EQUAL-LENGTH SEQUENCES OF NUMBERS
Scalar product; Dot Product; Standard inner product; Scaler product; Dotproduct; Dot products; Dot-product; Vector dot product; Projection Product; Complex dot product; Generalizations of the dot product; Norm squared; Point product; Norm-squared
  • Scalar projection
  • Triangle with vector edges '''a''' and '''b''', separated by angle ''θ''.
  • Distributive law for the dot product
  • Illustration showing how to find the angle between vectors using the dot product
  • <!-- specify width as minus sign vanishes at most sizes --> Calculating bond angles of a symmetrical [[tetrahedral molecular geometry]] using a dot product
  • Vector components in an orthonormal basis

scalar product         
¦ noun Mathematics a quantity (written as a.b or ab) equal to the product of the magnitudes of two vectors and the cosine of the angle between them.
dot product         
¦ noun another term for scalar product.
Dot product         
In mathematics, the dot product or scalar productThe term scalar product means literally "product with a scalar as a result". It is also used sometimes for other symmetric bilinear forms, for example in a pseudo-Euclidean space.

Википедия

Dot product

In mathematics, the dot product or scalar product is an algebraic operation that takes two equal-length sequences of numbers (usually coordinate vectors), and returns a single number. In Euclidean geometry, the dot product of the Cartesian coordinates of two vectors is widely used. It is often called the inner product (or rarely projection product) of Euclidean space, even though it is not the only inner product that can be defined on Euclidean space (see inner product space for more).

Algebraically, the dot product is the sum of the products of the corresponding entries of the two sequences of numbers. Geometrically, it is the product of the Euclidean magnitudes of the two vectors and the cosine of the angle between them. These definitions are equivalent when using Cartesian coordinates. In modern geometry, Euclidean spaces are often defined by using vector spaces. In this case, the dot product is used for defining lengths (the length of a vector is the square root of the dot product of the vector by itself) and angles (the cosine of the angle between two vectors is the quotient of their dot product by the product of their lengths).

The name "dot product" is derived from the centered dot " · " that is often used to designate this operation; the alternative name "scalar product" emphasizes that the result is a scalar, rather than a vector (as with the vector product in three-dimensional space).